Temperature dependence of band gaps in semiconductors: Electron-phonon interaction

نویسندگان

  • J. Bhosale
  • A. K. Ramdas
  • A. Burger
  • A. H. Romero
  • R. K. Kremer
چکیده

We have theoretically investigated, by ab initio techniques, the phonon properties of several semiconductors with chalcopyrite structure. Comparison with experiments has led us to distinguish between materials with d electrons in the valence band (e.g., CuGaS2, AgGaS2) and those without d electrons (e.g., ZnSnAs2). The former exhibit a rather peculiar nonmonotonic temperature dependence of the energy gap which, so far, has resisted cogent theoretical description. We analyze this nonmonotonic temperature dependence by fitting two Bose-Einstein oscillators with weights of opposite sign leading to an increase at low temperatures and a decrease at higher temperatures and find that the energy of the former correlates well with characteristic peaks in the phonon density of states associated with low-energy vibrations of the d-electron elements. We hope that this work will encourage theoretical investigations of the electron-phonon interaction in this direction, especially of the current ab initio type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature dependence of band gaps in semiconductors: electron-phonon interaction

Most of the experimental results for the temperature dependence of gaps have been obtained for elemental or binary semiconductors.[1] Lately, however, ternary materials such as those with chalcopyrite structure have begun to be investigated. Among the chalcopyrites under examination are II-IV-V2 compounds (e.g. ZnGeAs2) and those in which the divalent cation is replaced by either monovalent cop...

متن کامل

Isotopically Modified Semiconductor

Most elements present in conventional semiconductors consist of several stable isotopes (exceptions: Al, P, and I, which have only one stable isotope). Because of the availability of separated, nearly pure stable isotopes at affordable prices, a by-product of the fall of the Iron Curtain, many semiconductors can now be prepared with a tailormade isotopic composition which involves either pure i...

متن کامل

Temperature dependence of the band gap shrinkage due to electron-phonon interaction in undoped n-type GaN

The photoluminescence spectra of band-edge transitions in GaN is studied as a function of temperature. The parameters that describe the temperature dependence red-shift of the band-edge transition energy and the broadening of emission line are evaluated using different models. We find that the semi-empirical relation based on phonon-dispersion related spectral function leads to excellent fit to...

متن کامل

Bias-Induced Optical Absorption of Current Carrying Two-Orbital Quantum Dot with Strong Electron-Phonon Interaction (Polaron Regime)

The one photon absorption (OPA) cross section of a current carrying two-orbital quantum dot (QD) with strong electron-phonon interaction (polaron regime) is considered. Using the self-consistent non-equilibrium Hartree-Fock (HF) approximation, we determine the dependence of OPA cross section on the applied bias voltage, the strength of effective electron-electron interaction, and level spacing ...

متن کامل

برهمکنش الکترون - فونون در ابررساناهای دمای بالا

  We explore the important role of the strong electron-phonon interaction in high temperature superconductivity through the study of the results of some important experiments, such as inelastic neutron and X-ray scattering, angle resolved photoemission spectroscopy, and isotope effects. We also present our computational results of the eigenvalues and eigenvectors of the Ag Raman modes, and the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012